

5A, 2MHz ADI Controlled Output Synchronous Step-Down Converter

DESCRIPTION

The ETA3655 is a high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 5A of pulse load. It integrates an ADI interface that dynamically scales the output voltages on demand. The DCDC control block belongs to a new breed of high frequency synchronous Step-Down converter that combines the advantages of voltage mode control and Constant-On-Time control. Its adaptive Constant-On-Time control dynamically changes switch on time to achieve a constant switching frequency. It does not have the minimum ontime constrain normally a fixed-frequency current mode Step-down requires, allowing it to go down to very low duty ratio without affecting loop stability. The voltage mode nature also provides a more superior load transient response and a seamless transition from PFM to PWM modes. Cycle-by-cycle current limit provides output short-circuit protection and an input OVP function guards ETA3655 against possible input voltage surge. ETA3655 is housed in a 2mm x 1.6mm CSP-20 Package.

FEATURES

- ADI Dynamic Output Control
- Synchronous High Efficiency up to 95%
- Fast load transient response
- Capable of Delivering 5A
- Input OVP at 6.15V
- No External Schottky Diode Needed
- Thermal shutdown and UVLO
- CSP-20 (4x5) package

APPLICATIONS

- ARM based CPUs
- Smart Phone
- Tablet, MID
- Smart Set-Top Box, OTT

ORDERING INFORMATION

PART	PACKAGE PIN	TOP MARK
ETA3655CSU	CSP-20 (4x5)	3655
		YWWL - Date Code

Typical Application Circuit

TYPICAL APPLICATION

ETA3655

PIN CONFIGURATION

ELECTRICAL CHACRACTERISTICS

(V_IN = 3.6V, unless otherwise specified. Typical values are at TA = 25°C.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Voltage Range		2.5		5.5	٧	
Input UVLO	Rising, Hysteresis=300mV		2.35		٧	
Input OVP	Rising, Hysteresis=300mV		6.15		V	
Input Supply Current	Device Not Switching		70		μA	
Input Shutdown Current	EN=GND		1.5	10	μA	
Thermal Shutdown	Rising, Hysteresis =20°C		155		0°	
DC/DC converter						
Default Output Voltage	default bit 01100000		0.9		٧	
Load Regulation	Iout=0.1A to 5A, VIN =3.6V	0.3			%/A	
Line Regulation	V _{IN} =3V to 4V, I _{OUT} =3A	0.3			%/V	
Switching Frequency		2			MHz	
Maximum Duty Cycle			100		%	
PMOS Switch On Resistance	lsw =500mA	40			mΩ	
NMOS Switch On Resistance	lsw =500mA	15			mΩ	
High Side PMOS Switch Current Limit		6.5			Α	
Maximum Output Current Limit			6		Α	
Output Discharge Pull-down			10		Ω	
EN						
Input Low Voltage				0.4	٧	
Input High Voltage		1.15			۷	
Input Current				1	μA	

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

VIN Voltage	0.3V to 6.0V
All Other Pin Voltage	VIN-0.3V to VIN+0.3
SW to ground current	Internally limited
Operating Temperature Range	40°C to 85°C
Storage Temperature Range	55°C to 150°C
Thermal Resistance	Θ_{JA}
CSP-20	

ETA3655

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ADI Control					
SCK Clock Frequency			25.6		MHz
Input Set-up time		8			ns
Input hold time		12			ns
Output Delay				15	ns
Output Hold time		8			ns

PIN DESCRIPTION

PIN #	NAME	DESCRIPTION
A1	Vpad	Supply voltage, 1.8V typical
A2	EN	Chip enable control pin, pull high to turn the chip on
A3	ADI_SCK	Clock pin for ADI
Α4	FB	Feedback Input pin, connect to the output capacitor thru a trace.
B1	ADI_SD	Data 10 pin for ADI
B2, B3, C1, C2, C3, C4	PGND	Power ground for large switching current
B4	AGND	Analog ground, for internal control circuit
D1, D2, E1, E2	PVIN	Power supply for large switching current
D3, D4, E3, E4	SM	Switching node, to connect a 0.33-0.47uH inductor

TYPICAL CHARACTERISTICS

(Typical values are at $T_A = 25^{\circ}C$ unless otherwise specified.)

ETA3655

MMMMMM

tan hayana di bada b

FUNCTIONAL DECRIPTIONS

The ETA3655 is a high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 5A of pulse load. It integrates an ADI that dynamically scales the output voltages on demand. The ADI can also program the ramp rate output voltage changes and enable or disable the regulator.

DCDC Control scheme

Ţ Vout

I_SW

ETA3655 uses an adaptive Constant-On-Time control scheme that the ON time is dynamically adjusted according to VIN and VOUT so to achieve a nearly constant switching frequency. This control scheme provides simpler compensation and superior transient response

over traditional constant frequency current mode control, while still maintaining the advantage of switching at a constant frequency at about 2MHz. It also provides a seamless transition from PFM to PWM that normally a constant frequency current mode control scheme is hard to achieve. Further mode, because it is a CDT control scheme, the system can achieve high step-down ratio at ease, because lower constrain on the minimum on- time requirement existing in constant frequency scheme.

Current Limit and Short-Circuit protection

ETA3655 employs a cycle-by-cycle peak current limit. When the dead-short condition is removed, the IC goes back to normal operation.

Soft-start

ETA3655 has an internal soft-start circuitry to reduce supply inrush current during startup conditions. When the device exits undervoltage lockout (UVLO), shutdown mode, or restarts following a thermal-overload event, the I soft-start circuitry slowly ramps up current available at SW.

UVLD and Thermal Shutdown

If IN drops below UVLO threshold, the UVLO circuit inhibits switching. Once IN rises above ULVO threshold, the UVLO clears, and the softstart sequence activates. Thermal-overload protection limits total power dissipation in the device. When the junction temperature exceeds T_J = +155°C, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 20°C, resulting in a pulsed output during continuous overload conditions. Following a thermal-shutdown condition, the soft-start sequence begins.

REGISTER DESCRIPTION

ETA3655 DEVICE ADDRESS: 01

ETA3655 REGISTER TABLE

Addr		B15	B14	B13	B12	B11	B10	89	88	B7	B6	B5	B4	B3	B2	B1	BO
OOh	Name	Reserv	ved <15:10>			DCDC_ARM_CTL_ADI<9:5>				DCDC_ARM_CAL_ADI<4:0>							
	Default	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	Access	ReadO	nly					RW					RW				
Olh	Name	PG	Reserv	leserved <14:10>			Buck	mode	Out_	Slewrate<6:4>			Reserved <4:0>				
							_en		dis								
	Default	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0
	Access	RD	RD					RW	RW	RW	RW			RW			
02h	Name	VENDO	DR<15:13> Reserved <12:8>						FLAG<	7:4>							
	Default	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Access	RD			RD					RD				RD			

Dutput Voltage Setting Vout=DCDC_ARM_CTL_ADI(V)+3.125mV*DCDC_ARM_CAL<4:0>

Slewrate<6:4>:

000: 102mV/us;	001: 51.2mV/us;	010: 25.6mV/us;	011: 12.8mV/us;
100: 6.4mV/us;	101: 3.2mV/us;	110: 1.6mV/us;	111: 0.8mV/us;

PACKAGE OUTLINE

Package: CSP-20 (4x5)

